Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation?

نویسندگان

  • Chiara Del Vescovo
  • Pavel Klinov
  • Bijan Parsia
  • Ulrike Sattler
  • Thomas Schneider
  • Dmitry Tsarkov
چکیده

Extracting a subset of a given OWL ontology that captures all the ontology’s knowledge about a specified set of terms is a wellunderstood task. This task can be based, for instance, on locality-based modules (LBMs). These come in two flavours, syntactic and semantic, and a syntactic LBM is known to contain the corresponding semantic LBM. For syntactic LBMs, polynomial extraction algorithms are known, implemented in the OWL API, and being used. In contrast, extracting semantic LBMs involves reasoning, which is intractable for OWL 2 DL, and these algorithms had not been implemented yet for expressive ontology languages. We present the first implementation of semantic LBMs and report on experiments that compare them with syntactic LBMs extracted from real-life ontologies. Our study reveals whether semantic LBMs are worth the additional extraction effort, compared with syntactic LBMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Study of Logic-Based Modules: Cheap Is Cheerful

For ontology reuse and integration, a number of approaches have been devised that aim at identifying modules, i.e., suitably small sets of “relevant” axioms from ontologies. Here we consider three logically sound notions of modules: MEX modules, only applicable to inexpressive ontologies; modules based on semantic locality, a sound approximation of the first; and modules based on syntactic loca...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

The Role of Syntactic and Semantic Locality of Crossover in Genetic Programming

This paper investigates the role of syntactic locality and semantic locality of crossover in Genetic Programming (GP). First we propose a novel crossover using syntactic locality, Syntactic Similarity based Crossover (SySC). We test this crossover on a number of real-valued symbolic regression problems. A comparison is undertaken with Standard Crossover (SC), and a recently proposed crossover f...

متن کامل

The two be's of English

This  qualitative  study  investigates  the  uses  of  be  in  Contemporary  English.  Based  on  this  study, one  easy  claim  and  one  more  difficult  claim  are  proposed.  The  easy  claim  is  that  the  traditional distinction between be as a lexical verb and be as an auxiliary is faulty. In particular, 'copular-be', traditionally considered to be a lexical verb, is in fact a prototypi...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1207.1641  شماره 

صفحات  -

تاریخ انتشار 2012